48 research outputs found

    Weakly-Private Information Retrieval

    Get PDF
    Private information retrieval (PIR) protocols make it possible to retrieve a file from a database without disclosing any information about the identity of the file being retrieved. These protocols have been rigorously explored from an information-theoretic perspective in recent years. While existing protocols strictly impose that no information is leaked on the file’s identity, this work initiates the study of the tradeoffs that can be achieved by relaxing the requirement of perfect privacy. In case the user is willing to leak some information on the identity of the retrieved file, we study how the PIR rate, as well as the upload cost and access complexity, can be improved. For the particular case of replicated servers, we propose two weakly-private information retrieval schemes based on two recent PIR protocols and a family of schemes based on partitioning. Lastly, we compare the performance of the proposed schemes

    Direct Observation of Martensitic Phase-Transformation Dynamics in Iron by 4D Single-Pulse Electron Microscopy

    Get PDF
    The in situ martensitic phase transformation of iron, a complex solid-state transition involving collective atomic displacement and interface movement, is studied in real time by means of four-dimensional (4D) electron microscopy. The iron nanofilm specimen is heated at a maximum rate of ∼10^(11) K/s by a single heating pulse, and the evolution of the phase transformation from body-centered cubic to face-centered cubic crystal structure is followed by means of single-pulse, selected-area diffraction and real-space imaging. Two distinct components are revealed in the evolution of the crystal structure. The first, on the nanosecond time scale, is a direct martensitic transformation, which proceeds in regions heated into the temperature range of stability of the fcc phase, 1185−1667 K. The second, on the microsecond time scale, represents an indirect process for the hottest central zone of laser heating, where the temperature is initially above 1667 K and cooling is the rate-determining step. The mechanism of the direct transformation involves two steps, that of (barrier-crossing) nucleation on the reported nanosecond time scale, followed by a rapid grain growth typically in ∼100 ps for 10 nm crystallites

    Performance and Reliability Analysis of Cross-Layer Optimizations of NAND Flash Controllers

    Get PDF
    NAND flash memories are becoming the predominant technology in the implementation of mass storage systems for both embedded and high-performance applications. However, when considering data and code storage in non-volatile memories (NVMs), such as NAND flash memories, reliability and performance be- come a serious concern for systems' designer. Designing NAND flash based systems based on worst-case scenarios leads to waste of resources in terms of performance, power consumption, and storage capacity. This is clearly in contrast with the request for run-time reconfigurability, adaptivity, and resource optimiza- tion in nowadays computing systems. There is a clear trend toward supporting differentiated access modes in flash memory controllers, each one setting a differentiated trade-off point in the performance-reliability optimization space. This is supported by the possibility of tuning the NAND flash memory performance, reli- ability and power consumption acting on several tuning knobs such as the flash programming algorithm and the flash error correcting code. However, to successfully exploit these degrees of freedom, it is mandatory to clearly understand the effect the combined tuning of these parameters have on the full NVM sub-system. This paper performs a comprehensive quantitative analysis of the benefits provided by the run-time reconfigurability of an MLC NAND flash controller through the combined effect of an adaptable memory programming circuitry coupled with run-time adaptation of the ECC correction capability. The full non- volatile memory (NVM) sub-system is taken into account, starting from the characterization of the low level circuitry to the effect of the adaptation on a wide set of realistic benchmarks in order to provide the readers a clear figure of the benefit this combined adaptation would provide at the system leve

    Demonstration of Fuel Hot-Spot Pressure in Excess of 50 Gbar for Direct-Drive, Layered Deuterium-Tritium Implosions on OMEGA

    Get PDF
    A record fuel hot-spot pressure P[subscript hs] = 56±7  Gbar was inferred from x-ray and nuclear diagnostics for direct-drive inertial confinement fusion cryogenic, layered deuterium–tritium implosions on the 60-beam, 30-kJ, 351-nm OMEGA Laser System. When hydrodynamically scaled to the energy of the National Ignition Facility, these implosions achieved a Lawson parameter ∼60% of the value required for ignition [A. Bose et al., Phys. Rev. E 93, LM15119ER (2016)], similar to indirect-drive implosions [R. Betti et al., Phys. Rev. Lett. 114, 255003 (2015)], and nearly half of the direct-drive ignition-threshold pressure. Relative to symmetric, one-dimensional simulations, the inferred hot-spot pressure is approximately 40% lower. Three-dimensional simulations suggest that low-mode distortion of the hot spot seeded by laser-drive nonuniformity and target-positioning error reduces target performance.United States. Department of Energy (DE-NA0001944
    corecore